
1

Net Aware BitStreams that Upgrade
FPGA Hardware Remotely Over the Internet

CREATING INTELLIGENT BITSTREAMS THAT KNOW WHERE TO GO;

WHAT TO DO WHEN THEY GET THERE;
AND CAN REPORT BACK WHEN THEY’VE DONE.

Steve Casselman CEO-President, John Schewel VP Marketing & Sales

sc@vcc.com, jas@vcc.com
Virtual Computer Corporation,

 6925 Canby Ave #103
Reseda, California, USA 91335

Success in the marketplace may well depend upon the ability to upgrade and test hardware designs instantly
around the world. An upgrade management strategy requires more than just the bitstream file, email or a JTAG
cable. A well-managed methodology, capable of transmitting bitstreams directly into targeted FPGAs over the
network or internet is an essential element for a successful FPGA based product strategy. Virtual Computer
Corporation’s HOTMan? , Bitstream Management Environment combines a feature rich cross-platform API with
an Object Oriented Bitstream technique for Remote Upgrading of Hardware over the Internet.

DEPLOYING HARDWARE FOR IN-SYSTEM UPGRADES

To upgrade hardware remotely, the engineer needs a simple yet robust methodology for
managing and delivering bitstreams. Whether the target hardware is across the hall or across
the country, transmitting the bitstream, configuring the hardware and verifying its functionality
is required. This can be a cumbersome process at best. We will describe a point-to-point
solution for the management of in-system upgrades. A well-managed remote upgrade
methodology includes these features:

1. Upgrading FPGA designs with a single design methodology that works equally as well with embedded
systems as it does with any standard O/S based systems.

2. A methodology, that’s portable and customizable; with cross-platform capabilities for updating bitstreams
with functional controls from within application software.

3. Remote FPGA configuration, capable of total or partial reconfiguration of single or multiple FPGAs via
SelectMAP or JTAG ports. [1,2]

4. A Robust upgrade architecture enabling the upgrading of hardware based upon the initiative of a central
command (a 'push' update) with version control and target instructions built-in.

5. A method flexible and powerful enough that it can enable highly reliable upgrades both Remotely &
Automatically; including features like, secured and compressed bitstream files.

6. Designed for Low Cost Maintenance, with easy cross-platform migration; Code that is reusable across
products and customer application; quickly modifiable for any new hardware in a product.

BITSTREAMS AS HARDWARE OBJECTS

Object-oriented programming (OOP) is a revolutionary concept that changed the rules in computer program
development. An object is a bundle of variables and related methods. Programming objects are modeled after real-
world objects in that they too have state and behavior. An object maintains its state in one or more variables. An

2

object implements its behavior with methods. A method is a function (subroutine) associated with an object. By
applying Object programming techniques to bitstream files, we get a bitstream file that includes bitstream data,
other resource data and methods for the management of the bitstream itself. The bitstream configuration file alone
is not enough to facilitate remote upgrading. It needs other data such as version history for tracking and
maintenance, network protocol data, target location information, programmed commands and other essential data
for use from within executable programs. This makes bitstream Intelligent. The Intelligent BitStream includes all
the information required for delivery, verification, and use.

We call the Intelligent Bitstream a Hardware Object. Developed in 1994, VCC’s Hardware Object Technology
(HOT) provided the transportation link between bitstream generation and Run-Time use of the bitstream within
executable programs [3,4]. The converted BitStream file was ready for in-program use and enabled Remote Run-
Time configuration of the FPGA on our HOT2 Xilinx/PCI Board Development System [5]. The current Hardware
Object Class includes a wider range of data and methods; containing all the necessary information and processes
for remote configuration of Virtex FPGAs over the network.

The HOTMan Application Program creates the Hardware Object File from a user selected bit file
(<name>.bit). It outputs a static array file (<name>.hot) or a dynamic file (<name>.dll,
<name>.so). The Hardware Object (HOT File) is used with the HOT API, JAVA and a C++ compiler to provide
program control and delivery. The Hardware Object contains the compressed bitstream data as well as a number of
data fields (see below).

Figure 1. Hardware Object Content

BitStream File Management Control: Contains user selected Bit File, compressed and inserted within the
Hardware Object. Documentation Control: Contains Author Information, creation date, comments, security field
as well as options for auto-version/revision control numbers. Target Location ID: Information on the system,
board and device location of the targeted FPGA to be updated. Network Deployment Protocols: Network
Addresses & Server Command data. Object Methods: Methods for bitstream deployment, verification, and
testing of circuit as well as data transfer mechanisms to the hardware. Methods are activated via a combination
HotMan Program Functions, HOT API and/or User Libraries & User written programs.

BITSTREAM FILE
bit format

BITSTREAM
CONTROL INPUT

DOCUMENTATION INPUT
? Date Created
? Version Number
? Author's Name
? Comments

? Name of Target System
? Name of Target Board
? Name of Target Daughter Board
? Number of Target Device
? Part Number (Derived from BitStream File)

TARGET LOCATION ID
INPUT

NETWORK PROTOCOLS
INPUT

? Destination Address on Network where
target resides

? Message acknowledge from server
? Server command (e.g. ugrade, verify…)
? Port Number
? User :Library to be loaded

on Server Side

OUTPUT HOT File

Run-Time Loadable
Format

OBJECT
HARDWARE DynamicStaticOUTPUT HOT File in

 HOTFILE Format

USER APPLICATION

HOTMan

This Information is added
via

 Compressed Bit File
 Bit File Name
 Source Path
 Size of Uncompressed BitStream
 Size of Compressed BitStream

?
?
?

?

?

compilied to a

3

HARDWARE OBJECT DESIGN FLOW

 The conversion of the standard bitstream to a Hardware Object provides foundation for a well-managed bitstream
delivery solution. The Hardware Object is a bitstream that knows where to go, knows what to do when it gets there
and report back on it’s status. Figure 1 shows the design flow for Hardware Object Use. HotMan is an easy to use,
cost effective tool for advanced FPGA based IP network deployment management. [6]

I. CREATE HARDWARE OBJECT

tep 1: Convert BitStream to Hardware
Object using HOTMan or makeHOT
enabled programs.

Step 2: Add Network Deployment
Protocols, Target Location ID and
Documentation Control Information to the
Hardware Object.

II. LOCAL

Step 1: Program: Interface Hardware
Object w/ Target Hardware via user written
C++ program using the HOT API and HOT
File.

Step 2: Upgrade: Activate User Program
for Hardware Object Deployment.

III. REMOTE

Step 1: Program: Interface Hardware
Object w/ Target Hardware via user written
C++ program using the HOT API, User
Library and HOT File.

Step 2: Upgrade: Activate HotMan/Server;
Run Hardware Object on Client Side.

IV. Acknowledge

Step 1: Program: Implement desired
Acknowledgment routine in Custom User
Program or HOT File data.

Step 2: Acknowledged Data from
Upgraded via Client HotMan or Custom
User Program.

Figure 2. Design Flow for Creation & Use of Hardware Objects

THE APPLICATION PROGRAMMING INTERFACE

The HOT API is a set of file, compression, file manipulation and data retrieval methods for controlling the
Hardware Object. Besides the data setting functions relating to the HOT File data shown in the tables above, the
HOT API includes Compress(),UnCompress(),Load()and Save(). The Hot RunTime Libraries and
Hot.h files are the link between the Hardware Object and programmed execution. They are called by the
makeHot/ HOTMan programs and must be called by any user written programs. User written programs in C++

BITSTREAM
FILE

CONVERT BITSTREAM
TO HARDWARE OBJECT

UPGRADE
LocalRemote

CLIENT

TCP\IP Network

SERVER

ARCHIVE

USER LIBRARY
 Defines Target

Hardware Functions

IN-SYSTEM
HARDWARE
UPGRADE

USER PROGRAM
C++ with HOT library &

HOT API

 Written by User
 in C++ and includes

HOT API.

Transmit Receive

Transmit Receive

HOTMan

HOTMan or
makeHOT

4

use the HOT API to provide access to the Hardware Object locally or remotely [7]. Below is an example program
code for printing the Server Address information:

 // Output the Destination Server Address of the target hardware

 printf("\tDestination Server = %s\n", Hottest.getServer());

The HOTMan Bitstream Management Environment includes: HotMan , a JAVA based program for creation,
management and deployment of Hardware Objects. It includes a ‘RUN’ feature for activating Hardware Objects. If
the target hardware is located on a remote server, the HOTMan program in Server mode must be running on the
target server. The Bitstream Management Environment includes the MakeHot program, a command line program
for creating Hardware Objects and HOT API files for C++ programming.

Menu and Tool Bar

RUN Button: Activates the Hardware Object

Location of bit file

Names of Hardware Object, System, Board &
Device #

Command (e.g. upgrade, verify, test)

Author & Comments

Remote User Library & Port Number

Acknowledge: Status of Command

BitStream Information Fields

Version Control Number

Command Line Window and Status Bar

Figure 3. HotMan -- Main Window

The HOTMan BitStream Management Environment is not bound by any specific OS restrictions. There are two
components necessary to implement an upgrade strategy on the client-side; the HOTMan program and HOT
dynamic library for bitstream conversion and activation. On the server side, three software components are
needed; HOTMan Server Program, HOT dynamic library and the HotJTag dynamic library for upgrading any
hardware connected via the JTAG cable. The HOTMan environment also provides the necessary API for the user
to write a stand-alone program and user dynamic library for remote upgrading.

The simplest method of upgrading hardware in the field is described below. Install HOTMan on the client and
server side, along with the HotJTag dynamic library on the server and you are just a ‘click’ away from configuring
your remote hardware via the JTAG cable. (see figure 4)

5

Figure 4. Using HOTMan BitStream Management Environment

IMPLEMENTATION

In a series of bitstream compression benchmarks [8], HOTMan averaged 54% compression on a diverse number of
designs. This would double the number of configurations one could place inside a PROM (see table below). With
HOTMan, the same Hardware Object can easily be delivered, whether the target hardware is in a Windows
managed PC, a Linux based cluster or an embedded system. The combination of this delivery feature and the
compression of the bitstream offers alternative design choices that can save money. The table below shows the
configuration requirements for example Xilinx FPGAs, using the Xilinx In-System programmable PROM
solution. The target hardware must have a processor and connectivity for remote programming PROM and/or
FPGA. In the high end cases below, the compression feature alone could cut the number of PROMs needed in half.
In all the cases, one can even eliminate the PROM altogether with direct remote configuration using HOTMan;
savings can be calculated in components used and power costs.

NOTES: * -- In-System Programmable Xilinx PROM (Data from: Xilinx Inc. DS026 (v3.0) Nov 2001)

 ** -- Avg. Dist. Price 2002 (Qty. 1) Partminer

The example task below is to upgrade the #2 FPGA on Virtual (Board) over the internet via the JTAG parallel
port connector (Figure 4). The bitstream configuration file is converted into a Hardware Object called test.hot
on the Workstation via HOTMan.

SETUP: Settings within Hardware Object -- test.hot
Hardware Object Data is set via -- HOTMan or makeHot or from within a User written program.
Where to go: Locate Target Device for Upgrading.

//location of target hardware
Hottest.setServer (100.255.0.1);
Hottest.setBoardName(“Virtual”);
Hottest.setPortNumber (455);
// location of target Device #2, the third FPGA on the board chain
(Single device location is set to 0)
Hottest.setUnitNumber (2);

FPGA
Device

Number of
Configuration Bits

Number of
PPROMS needed *

FPGA
Cost **

PROM
Cost**

Config.
Cost Ratio

HIGH END
XCV1000E 6,587,520 2 -- XC18V04 1,300.00 92.00 7%
XCV2000E 10,159,648 3 -- XC18V04 3,300.00 138.00 4%
XCV3200E 16,283,712 4 -- XC18V04 8,000.00 184.00 2%
LOW END

XC2S50 559,200 1 -- XC18V01 16.60 17.25 104%
XC2S15 197,696 1 –XC18V256 8.85 10.75 121%

Client

Create
Hardware

Object

HOTMan

BIT
File

HOT
ACTIVATE

via RUN

HOTMan Server

HOT
JTag

Target
FPGAs

VCC
Runtime
Library

VCC
Runtime
LibraryHOT

JTag
Cable

Unpack
Hardware

Object

BIT
File

VCC
Runtime
Library

User
BitStream

Payload Delivery
TCP/IP

6

What to do: Perform an Upgrade on target Hardware with the JTAG cable.

// Command Functions
Hottest.setCommand (upgrade);
Hottest.setUserLib (HotJTag);

Server Side: VCC Library: HotJTag -- Method: upgrade
Setup: FTP HotJTag dynamic library to target server. Connect the Parallel JTAG cable on the server to target
system. Run HotMan on Server with Server Activated at Port 455.
Client Side: Upgrade Remote HardwareUse: 1) Start HOTMan Client, 2) Open test.hot, 3) Press RUN
Button, 4) Check the Status Bar on HotMan window for confirmation of successful upgrade.

Figure 5. Using HOTMan BitStream Management Environment for Avionics & Satellite Space Application [9]

CONCLUSION

 The combination of design complexity, component size and the use of multiple FPGAs in target systems increase
the number of design versions used by customer products. A method for handling remote hardware upgrades in the
field is necessary for a successful reconfigurable product line strategy. The bitstream file needs to carry with it all
the information required for delivery, verification, and use.
With only minor changes to your software, the HOTMan Bitstream Management Environment can enable your
systems for Remote Upgrading and add value for both you and your customers. The addition of HotMan to your
product will extend it’s life and simplify support and distribution models. With HotMan, you could manufacture a
single physical version of your hardware and ship multiple different hardware versions. Your customers will
appreciate the speedy, hassle-free upgradability of your products. The VCC HOTMan BitStream Management
Environment provides a powerful software framework that allows designers to easily integrate Remote Upgrading
of FPGAs into their designs. The object oriented nature of Hardware Objects eliminates the need to handle low
level issues with hardware interfacing designs, JTAG or SelectMap programming, allowing the designer to focus
on the end-user’s application. The modular nature of HOTMan allows you to add new features without disturbing
your current application framework.

The software architecture of the HOT environment places enough information into the hardware object for it to get
to it’s target no matter where it is. While other vendor solutions try and make their system ‘push button’, they in
fact, take away flexibility [10]. They force you to design your PCB to their specification and their operating
systems. Designers need this flexibility to lower cost of the system they are trying to implement. The HOTMan
BitStream Management Environment is a reliable and low cost software-based solution for remote upgrading of
single or multiple FPGAs.

Avionics

Comm. TowerWorkstation

INTERNET

Ground Station

Satellite

7

REFERENCES

1. The Virtex-II Platform FPGA Handbook Xilinx, Xilinx Inc. December 2000
2. Virtex Configuration Architecture Advanced Users’ Guide XAPP 151 Xilinx, Xilinx Inc.1999.
3. S. Casselman, M. Thornburg, J. Schewel User’s Guide, EVC1, Virtual Computer Corp., August 1994
4. S. Casselman, M. Thornburg, J. Schewel, Hardware Object Programming on the EVC1, Proceedings of SPIE

FPGAs for Fast Board Development and Reconfigurable Computing, April 1995.
5. S. Casselman, C. Beaumont, J. Schewel, IP Validation for FPGAs using Hardware Object Technology,

Proceedings of 9th International Workshop FPL’99, August 1999.
6. S. Casselman, IP Reconfigurable Logic Based Fibre Channel Network Card with Sub 2us Raw Latency,

Proceedings of 65th International Workshop FPL’96, September 1996.
7. Bjarne Stroustrup,. The C++ Programming Language, Addison-Wesley, Mass. USA. February 2000.
8. Z. Li, S. Hauck, Configuration Compression for Virtex FPGA, IEEE Symposium on FCCM, 2001.
9. S. Casselman, J. Schewel Exploration & Experimentation with Reconfigurable Computing, Workshop on

Remote Exploration and Experimentation (REE), Jet Propulsion Laboratory/NASA, August 1995.
10. PAVE Framework (PLD API for VxWorks Embedded Systems), Xilinx Inc. DS084 (v1.0) September, 2001.
All trademarks belong to their respective companies.

